آرک پیمائش بمقابلہ آرک لمبائی

جیومیٹری میں ، آرک اکثر پایا جانے والا ، مفید شخصیت ہوتا ہے۔ عام طور پر ، آرک کی اصطلاح کسی ہموار وکر کو حوالہ کرنے کے لئے استعمال ہوتی ہے۔ نقطہ آغاز سے آخر نقطہ تک لمبائی کو قوس کی لمبائی کہا جاتا ہے۔

خاص طور پر ، آرک کی اصطلاح اس کے طواف کے ساتھ ساتھ دائرے کے کسی حصے کے لئے استعمال ہوتی ہے۔ قوس کا سائز عام طور پر زاویہ کے سائز کے ذریعہ مرکز میں آرک کے ذریعہ یا آرک کی لمبائی کے ذریعہ دیا جاتا ہے۔ مرکز پر محیط زاویہ کو آرک کے زاویہ پیمائش یا غیر رسمی طور پر آرک پیمائش کے نام سے بھی جانا جاتا ہے۔ یہ ڈگری یا ریڈینز میں ماپا جاتا ہے۔

قوس کی لمبائی آرک کے سائز سے مختلف ہوتی ہے ، جہاں لمبائی منحنی رداس اور آرک کے زاویہ پیمائش پر منحصر ہوتی ہے۔ قوس کی لمبائی اور آرک پیمائش کے مابین اس تعلق کو ریاضی کے فارمولے کے ذریعہ واضح طور پر ظاہر کیا جاسکتا ہے ،

ایس = آرθ

جہاں ایس آرک کی لمبائی ہے ، آر رداس ہے اور rad ریڈیوں میں آرک کا زاویہ پیمائش ہے (یہ ریڈین کی تعریف سے براہ راست نتیجہ ہے)۔ اس رشتے سے ، دائرے کی فریم یا فریم کا دائرہ آسانی سے حاصل کیا جاسکتا ہے۔ چونکہ دائرے کا دائرہ قوس کی لمبائی ہے جس کی زاویہ 2 measure ریڈیئنز ہے۔

C = 2πr

ریاضی کی ہر سطح پر یہ فارمولے اہم ہیں ، اور بہت سارے استعمالات انہی آسان نظریات کی بنیاد پر اخذ کیے جاسکتے ہیں۔ در حقیقت ، ریڈین کی تعریف مذکورہ فارمولے پر مبنی ہے۔

جب آرک کی اصطلاح سے مراد کسی مڑے ہوئے لکیر کا ہوتا ہے ، سرکلر لائن کے علاوہ ، قوس کی لمبائی کا حساب کتاب کرنے کے لئے اعلی درجے کی کیلکولوس کو استعمال کرنا پڑتا ہے۔ خلا میں دو نکات کے مڑے ہوئے وکر کی راہ کو بیان کرنے والے فنکشن کا حتمی جزو آرک کی لمبائی دیتا ہے۔

آرک پیمائش اور آرک لمبائی میں کیا فرق ہے؟ c ایک آرک کا سائز آرک کی لمبائی یا آرک کے زاویہ پیمائش (آرک پیمائش) سے ماپا جاتا ہے۔ قوس کی لمبائی منحنی خطوط کے ساتھ لمبائی ہے جبکہ قوس کا زاویہ پیمائش زاویہ ہے جو آرک کے ذریعہ مرکز میں دب جاتا ہے۔ c قوس کی لمبائی لمبائی کی اکائیوں میں ماپا جاتا ہے جبکہ پیمائش کا زاویہ زاویوں کی اکائیوں میں ماپا جاتا ہے۔ c قوس کی لمبائی اور آرک کے زاویہ پیمائش کے درمیان تعلق S = rθ کے ذریعہ دیا گیا ہے۔